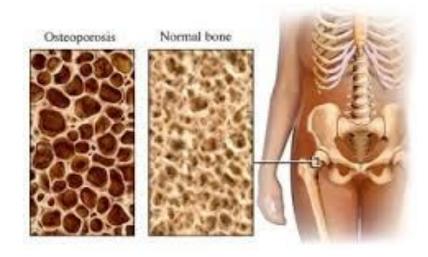
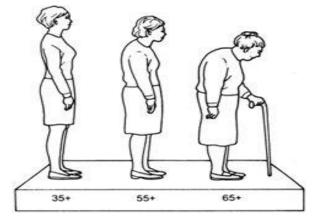
DISCLAIMER

The information contained in this presentation is not intended as a substitute for professional medical advice, diagnosis, or treatment. It is provided for educational purposes only. You assume full responsibility for how you choose to use this information.

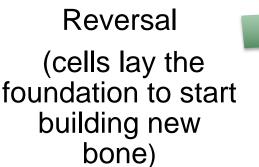
Optimal Bone Health: Preventing Osteoporosis and Bone Loss as you Age

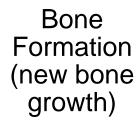

Joseph Lane, MD Patricia Donohue, NP, Metabolic Bone



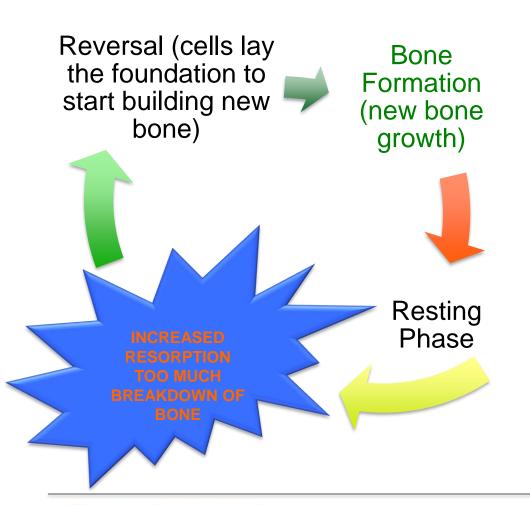
What is Osteoporosis

- Osteoporosis is a silent skeletal disease
- Low bone mass/density
- Microarchitecture loss within the bone
- Increase in bone fragility and fracture





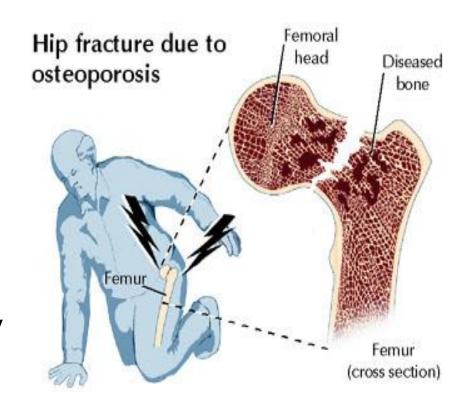
What is Bone Health?


Bone Reabsorption (breakdown of bone)

Resting Phase

Osteoporosis

Osteoporosis happens when you;

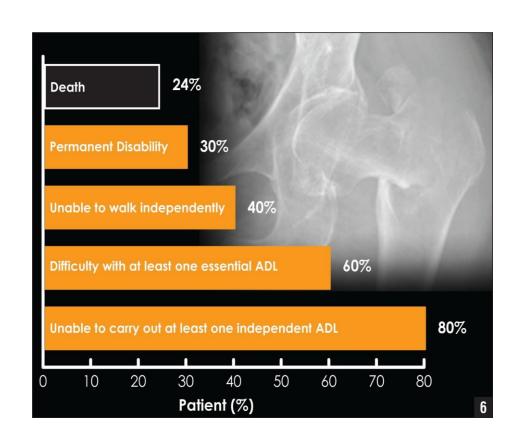

- Make too little bone (FORMATION)
- Loose too much bone (RESORPTION)
- Or a combination of both

What Do We Know?

- 1 out of 2 women
- 1 out of 4 men

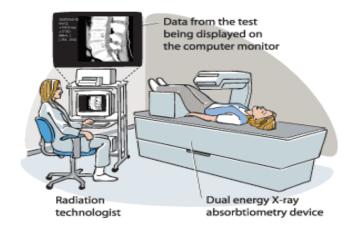
Over the age of 50 will sustain an Osteoporotic related Fracture in their lifetime

 Low energy trauma fractures are associated with poor bone quality



What Do We Know?

People who sustain low energy fractures are at higher risk of;


- Sustaining additional fractures
- Disability
- Death

What Can We Do?

Evaluation of bone quality

- Bone Density (DXA)
- Trabecular Bone Scores (TBS)
- Quantitative Cat Scans (QCT)
- FRAX Score
- Vertebral Fracture Assessment (VFA)
- Laboratory Bone Markers

Medical Imaging Center

medimaps

957 Ocean Boulevard - 97212 - Portland

Patient : Test1 Test1 Patient ID: Date of birth: 01/01/1980 54,7 years Acquisition date: 29/09/2014 Height / Weight: 165,1 cm / 60,0 kg Prescribing doctor: Gender / Ethnicity: Female / White

SPINE TBS REPORT

TBS reference graph TBS Mapping TBS L1-L4:1,249 1,600 1,500 1,100 1,000 0.90 TBS Values

Additional results

Region	TBS	BMD	BMD T-Score
L1	1,055	1,207	22.5
L2	1,257	1,261	
L3	1,321	1,284	0,0
L4	1,362	1,297	0,0
L1-L4	1,249	1,265	
L1-L3	1,211	1,252	0,0
L1-L2	1,156	1,235	0,0
L2-L4	1,313	1,282	0,0
L2-L3	1,289	1,273	0,0
L3-L4	1.341	1.291	0.3

Comments

The TBS is derived from the texture of the DEXA image and has been shown to be related to bone microarchitecture and fracture risk

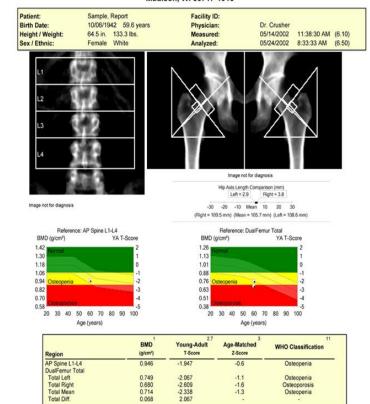
Tris data provides information independent of BMD value; it is used as a complement to the data obtained from the DEXA analysis and the clinical examination The

TBS score can assist the health care professional in assessment of fracture risk and in monitoring the effect of treatments on patients across time Overall fracture risk will depend on many additional factors that should be considered before making diagnostic or therapeutic recommendations

The software does not diagnose disease or recommand treatment regimens. Only the health care professional can make these judgments.

DXA file: "agwncn001.mes" (TBS analysis done on 25/10/2014, version 2.1.1.0)

This DXA system has not been calibrated with a specific TBS phantom. The TBS score has been computed with a generic calibratio


These results can be used at the sole discretion of the physician

GE Lunar Corporation

726 Heartland Trail Madison, WI 53717-1915

- 1 -Statistically 68% of repeat scans fall within 1SD (± 0.010 g/cm² for AP Spine L1-L4); (± 0.010 g/cm² for DualFernur Total Mean)
- 2 USA/NHANES, AP Spine Reference Population, Ages 20-40; USA/NHANES, Femur Reference Population, Ages 20-40
- 3 -AP Spine Matched for Age, Weight (females 25-100 kg), Ethnic; DualFemur Matched for Age, Weight (females 25-100 kg), Ethnic
- 7 Dual Femur Total T-Score difference is 0.5. Asymmetry is None.
- 11 -WHO Definition of Osteoperosis and Osteoperoia for White Women: Normal = T-Score at or above -1.0 SD; Osteoperoia = T-Score between -1.0 and -2.5 SD; Osteoporosis = T-Score at or below -2.5 SD

Printed: 08/12/2002 9:21:29 PM (7:00); Filename: zielsc_gw3vy0akb.dfx; AP Spine; 13.9:%Fat=4.9%; Scan Mode: Standard; Right Femur; 12.8:%Fat=21.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; 13.1:%Fat=19.2%; Neck Angle (deg)=53; Scan Mode: Precise; Left Femur; Neck Angle (deg)=53; Scan Mode: Precis

GE Medical Systems Prodigy DF+00001 LUNAR

What Can We Do? Non Modifiable Risk Factors

- Race
- Small bone structure
- Hereditary tendencies
- Family History
 - Osteoporosis
 - Hip fracture

- Diabetes
- Hyperthyroidism
- Rheumatoid Arthritis
- Lupus
- Renal Failure
- Celiac Disease
- Inflammatory bowel disease, Crohns
- Collagen Disorders

What Can We Do? Modifiable Risk Factors

- Fall Prevention
- Tobacco and caffeine use
- Regular alcohol consumption (over 3 drinks/day)
- Bedridden-weight bearing restrictions on long bones
- Inactive Lifestyle
- Low Estrogen
- Low Testosterone/Androgen Insufficiency

Nutrition

- Eating disorders
- Low Body Weight
- Obesity
- Insufficient intake of calories
- Low Calcium
- Vitamin D deficiency

Medications

- Corticosteroids
- Proton Pump Inhibitors
- Anticonvulsants
- Antidepressants
- Aromatase Inhibitors
- Thyroid hormones in excess
- Other Medications

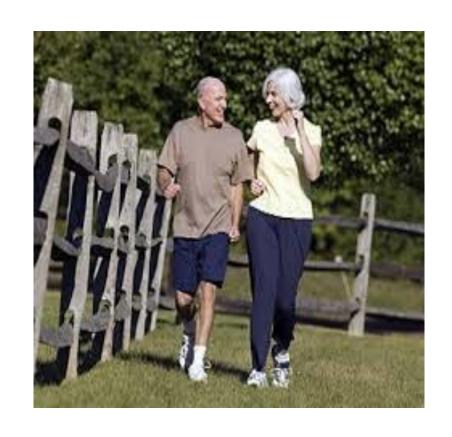
Age and Fracture

- Falls more common as we advance in age
- Many osteoporosis related fractures due to falls
- Over 90% hip fractures due to falls
- Adults-Falls per year
 - 33% > age 65
 - 40% > age 75

Fall Prevention

- Visual and hearing screening and treatment
- Optimize medications
- Avoid throw away rugs
- Reduce clutter, cords out of area
- Handrails
- Bathroom lights

What Can We Do? Fall Prevention


- "Age related loss of skeletal muscle mass and function"
- Loss of muscle or may be in conjunction with increased fat mass
- Low muscle mass and low muscle strength

Bone Loading Exercises

- Goal 15-60 minutes 2-3 times per week
- Weight Bearing Exercises
 - Standing and moving against gravity
 - High & Low Impact Aerobics
 - Walking, Jogging
 - Thai Chi & Yoga, Pilates are great for balance, strength and fall prevention

Resistance Exercises

- Muscle Strengthening Exercises-hip and back (spine)
 - Move your body, a weight or some other resistance against gravity
 - Light weights, resistance bands
- Non-Impact Exercises
 - Balance, Posture, Functional Exercises

Nutritional Considerations Calcium (Vitamin D)

Dairy

- · Milk; skim, low fat
- Yogurt, Greek
- · Cheese, Cottage cheese, Kephir
- Ice Cream

Green vegetables

 Broccoli, Kale, Collard Greens, Swiss Chard, Bok Choy

Seafood

Sardines, Salmon

Other

- Almonds, Fortified Juices, Cereals, Breads, Soy products
- Dried Figs
- · Fortified juice, cereal, soy milk

Calcium Intake

Recommended Daily Calcium Intake

Men		Women	
19-70 years	1,000 mg	19-50 years	1,000 mg
71 years and older	1,200 mg	51 years and older	1,200 mg

Source: National Osteoporosis Foundation

Calcium

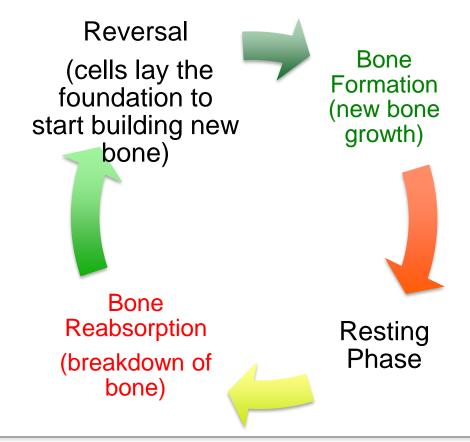
- Chewable, liquid and tablets
- Calcium Citrate
- Calcium Carbonate
- Smaller dosage
- Side effects include constipation, kidney stones
- Interactions with other medications

Learn to read labels

Supplement Facts Serving Size 1 Tablet			
Amount Per Serving		% DV	
Vitamin D-3 (as cholecalciferol)	200 IU	50%	
Calcium (as calcium citrate) (from 1500 mg calcium citrate)	315 mg	32%	

Other ingredients: Stearic acid, cellulose, silica.

	Amount Per 2 Tablets	%Daily Value
Vitamin D (as ergocalciferol)	400 IU	100%
Vitamin K (as phytonadione)	10 mcg	13%
Thiamin (Vitamin B-1) (as thiamine HCI)	3 mg	200%
Riboflavin (Vitamin B-2)	3.4 mg	200%
Niacin (Vitamin B-3) (as niacinamide)	40 mg	200%
Vitamin 8-6 (as pyridoxine HCI)	4 mg	200%
Folate (as folic acid)	400 mcg	100%
Vitamin 8-12 (as cyanocobalamin)	25 mcg	417%
Biotin	300 mcg	100%
Pantothenic acid (as d-calcium pantothenate)	20 mg	200%
Calcium (as calcium carbonate, dicalcium phosphate)	200 ma	20%
Phosphorus (as dicalcium phosphate)	50 mg	5%
lodine (from kelp)	150 mcg	100%
Magnesium (as magnesium oxide)	100 mg	25%
Selenium (as sodium selenate)	20 mcg	29%
Manganese (as manganese gluconate)	2 mg	100%
Chromium (as chromium amino acid chelate)	150 mcg	125%
Molybdenum (as molybdenum amino acid chelate)	75 mcg	100%
Boron (as amino acid complex)	750 mcg	t
Lycopene	1 mg	Ť
Vanadium (as vanadium amino acid chelate)	10 mcg	Ť


Vitamin D Intake

	Under Age 50	Age 50 & Older
Women & Men	400-800iu Daily	800-1,000iu Daily

- Cholocaciferol (D₃)
- Ergocalciferol (D2)

Medical Treatment and the Bone Growth Cycle

Medications for Bone

- Bone remodeling agents decreases bone resorption or bone turnover
- Bisphosphonates, (Oral-Fosamax, Actonel, Boniva, IV yearly infusion-Reclast)
- RANK Ligand inhibitor, (Denosumab Prolia) subcutaneous injection every 6 months
- Selective estrogen receptor modulators, (SERMs- Evista)
- Estrogen Therapy-prevention
- Testosterone Therapy

Anabolic Agents

- Bone Formation/Anabolic Agent (Synthetic Parathyroid Hormone, PTH-rp)
- Promotes new bone growth
- Daily subcutaneous injection (28 doses = 1 pen)
- Minimum duration of treatment 3 months
- Maximum treatment 2 years (FDA approval)

Thank you! Questions?

State of Health Care Quality Report 2014

Evaluate quality of care health care plans provide to Medicare beneficiaries

- Healthcare Effectiveness Data and Information Set (HEDIS)
 - Tool to measure performance of care and service
- Medicare Health Outcomes Survey (HOS) quality measures for elderly populations
 - Falls Risk Management
 - Osteoporosis Testing in Older Adults
 - Physical Activity in Older Adults
 - Management of Urinary Incontinence

Evidence Based Practice Medicine 2011 International Osteoporosis Foundation Position Paper

"Capture the Fracture Campaign"

Secondary Fracture Prevention Public health priority throughout the world

Growing body of evidence from many countries shows;

- "Fractured Liaison Service"
- Coordinated Multidisciplinary Approach for secondary prevention leads to
 - Fewer subsequent fractures
 - Significant cost savings for healthcare systems

